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Energy-resolved electron momentum densities of
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Abstract, The linear muffin-tin orbital (LMTO) method has been used to calculate energy and
momentum distributions of valence electrons in diamond. silicon, germanium and grey tin along
[100], [110] and [11I] directions and as the spherical average over the imeducible wedge of
the Brillouin zone. These data can be used for interpreting results of (e, Ze) experiments on
single-crystal, polycrystalline and amorphous targets.

1. Introduction

Since the introduction of the density functional theory (DFT) (Hohenberg and Kohn 1964)
and the local density approximation (LDA) (Kohn and Sham 1965) some thirty years ago,
enormous progress has been achieved in the field of first-principles theoretical calculations of
the ground-state properties of bulk semiconductors, their surfaces and interfaces (Lundqvist
and March 1983, Bassani ef al 1985). The density functional theory in principle provides
an exact formalism for the ground-state energy. The local density approximation reduces
the many-body problem to the self-consistent solution of a set of effective one-particle
equations. On this basis, many calculation methods have been developed which have the
computational efficiency and accuracy for a wide range of materials. For the valence band
structure of bulk semiconductors, in pariicular, the difference between the results of different
computational schemes is often less than the best experimental resolution available nowadays
- from techniques such as angle-resolved photoemission (Leckey and Riley 1992). The biggest
drawback of the local density approximation is that the one-particle eigenvalues can not be
interpreted formally as quasiparticle energies. When compared to optical data, band gaps in
semiconductors are typically underestimated by 30-50%, and in particular cases like Ge the
gap is closed when relativistic effects are taken into consideration (Bachelet and Christensen
1985). To account for this discrepancy, the latest development in this area has been the use of
the so-called GW approximation (GWa) for the evaluation of the electron seif-energy operator
and has led to excellent agreement with a large body of experimental data (Hybertsen and
Louie 1986a, Rahlfing et al 1993a), including in particular those concerning the conduction
bands obtained from inverse photoemission (Ortega and Himpsel 1993). Nevertheless,
these quasiparticle calculations produced essentially the same results as those produced by
calculations based on the local density approximation as far as the relative energies of the
valence bands are concerned (see further discussion in section 4), the improvement having
been mainly on the prediction of the conduction bands and of the band gaps.

1 email address: anatoli@esm.ph.flinders.edu.au.

0953-8984/95/091821+13$19.50 (@ 1995 IOP Publishing Ltd 1821



1322 A S Kheifets and Y Q Cai

On the other hand, theoretical valence-band-structure calculations in the past have
been tested almost exclusively in terms of energy, i.e., the eigenvalues of the Kohn—Sham
equations (Kohn and Sham 1963). In contrast, relatively little attention has been directed
towards the wave-function (i.e., the eigenfunction) of the electrons. This is despite the fact
that wave funcrion information provides a more sensitive way of testing the computational
scheme under investigation if the electron wave function can be measured experimentally.
Direct measurements of the wave function are not available at the present time, but it iy
known that under the independent-particle approximation the spectral momentumn density
(sMD) p(e, q) is proportional to the square of the one-electron wave function in the
momentam space. Since p(e, ) de dg gives the probability of finding an electron within
the energy and momentur ranges of € to € 4 de and ¢q to g + dg, respectively, the sMD
dictates the electronic properties of solids. Partial information on the momentum density can
be obtained readily from Compton profiles (Cooper 1985} and from the angular correlation
of positron annihilation radiation (Jain er a/ 1985). In terms of a full testing of the wave
function, the energy-resolved electron momentum spectroscopy (EMS) based on the (g, 2e)
reaction (McCarthy and Weigold 1988, 1991) provides enormous potential. The EMS has
achieved great success in the study of the momentum distribution of valence electrons in
gas targets (McCarthy and Weigold 1988, 1991). For solid materials, a series of recent
experiments have also been successfully performed on various amorphous and disordered
thin-film targets (Vos et al 1994, 1995b, a, Cai er al 1995b, a, Storer er al 1995), calling
for theoretical studies of the spectral momentumn density. For this purpose, it is appropriate
to revisit existing computational techniques. This would not only provide a more sensitive
way of testing the calculation technique, but also provide the necessary theoretical data for
interpreting experimental (e, 2e} results.

We have studied the sSMb of diamond-strueture semiconductors, including diamond (C),
silicon (Si), germanium (Ge) and grey tin (w-Sn), using the linear muffin-tin orbital (LMTO)
method. In the present paper, the results for the three major symmetry directions [001],
[110] and [11%] (i.e. along the symmetry axes A, T and A, respectively) and as the spherical
average over the irreducible wedge of the face-centred cubic (FCC) Brillouin zone will be
presented. As recent (e, 2e) studies of the SMD of evaporated amorphous diamond (Storer
et al 1995), silicon (Vos et al 1995g), germanium (Cai ef al 1995a) and polycrystalling
silicon carbide (Cai et af 1995b) showed, the spherical averaging of the spectral momenturm
density can be used to study amorphous and disordered materials.

The rest of the paper will be organized as follows. In section 2 we outline the LMTO
method and specify the atomic sphere parameters used in our calculation, In section 3 we
express the SMD in terms of the LMTO eigenfunctions and link it with various forms of the
differential cross-sections obtained from the (e, 2e) reaction. The band-structure calculation
results are discussed in section 4.1 in comparison with other theoretical and experimental
data available to date. Directional and spherically averaged SMD are presented in section 4.2,
Finally the resuits are summarized in section 5.

2. The LMTO method

The formalism of the LMTO method has been described in details in the monograph of
Skriver (1984). The essence of the method is that for the atomic polyhedra a number of
atomic spheres are substituted, each of which represents a non-equivalent atomic position.
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The total volume of the spheres is equated to the volume of the elementary cell:
4 ‘ .
D o3TR =0 _ . | m

where R, is the muffin-tin (MT) radius of a sphere at site s, )

The electron potential is spherically symmetric within the spheres. The tails of the
LMTO orbitals outside the spheres are chosen to have zero kinetic energy. The Bloch sum
of the tails is cancelled within the spheres. So the one-clectron wave function within any
particular sphere centred at r; can be written as

; |
Ykl —7y) = Za;.’,’,;ffnm(m;mm n=r-ni<k. @
tm

Here k is the crystal wave vector, j is the band index, Yi. is the spherical harmonic
depending on the orbital momentum / and its projection m. The expansion coefficients ajfn
for a given MT sphere 5 are found by solving the LMTO eigenvalue problem. The radial part
of the wave function Py () depends on the type of atom at site 5 and the orbital momentum
[ but does not depend on k and j which increases significantly the computational efficiency
of the LMTO method.

The diamond structure e¢lementary cell has two non-equivalent atomic positions at
(0,0,0) and (a/4, a/4, a/4) where a is the lattice parameter. This structure is, however,
far from close packing with only 0.34 of the cell volume filled with touching spheres.
We follow the treatment of the ‘open’ diamond structure by Glitzel er af (1980) who
suggested inserting two empty atomic spheres at the interstitial sites. We choose these sites
at (—a/4, —a/4, —af4) and {a/2,0, 0).

The MT radius corresponding to four equal-size spheres is calculated from (1) as

3\ 173
R, = ‘i(_) = 0.2462a. 3)
4 \m
We use the MT radii given in table 1 which we calculate with the lattice parameters

obtained from the book of Cohen and Chelikowsky (1988). We chose the maximum orbital
momentunt In,, = 2'in the LMTO expansion (2).

Table 1. Lattice parameters and MT radii (in atomic units).

Lattice parameter  MT radius

Matepial (A) (au) (au)
Diamond 3.567 6.742 1659
Silicon 5431 10263 2527

Germanium  5.657 10.690 2.632
Grey tin 6491 12267 3.020

3. The spectral momentum density

By definition, the SMD is expressed through the Fourier transform of the one-electron wave
function ¥x:

2
Sg.k+c 8(€ — Ej(k)) keclstBz (4)

Gk -
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Here n;;;, and E;j, are the occupation number and energy of the cotresponding one-electron
state. The integration in (4) is carried out over the unit cell where the wave function v
is normalized to unity. The reciprocal-lattice vector (& transiates the momentum g to the
first Brillouin zone (BZ}. The sMD is normalized over energy and momentum space to the
number of valence electrons per unit cell per spin:

2Y" [ de dq pyte. ) = ©)
i

The sMD gives the probability of finding an electron in band j within the unit range
of the energy and momentum space. This is the most detailed information about electron
distribution in solids. Less specific distributions can be obtained by the partial integration
of the SMD over momentum or energy which gives either the density of states:

2Y. [ sa ne.0= N ®
4
or the energy-integrated electron momentum density (EMD}

f de pyle. @) = p;(@) )

where according to (4)
2
Sq.k+G- ®

f d*r Y (reiaT

o) = @)Y np
Gk

Taking advantage of the central-field expansion {2) the SMD can be readily calculated
as
2

R,
2 . - 4
e @) = = S|S0 Y el in ) [ 0 @) Pur)| bqssc e — B
Gk 5 im S

)
where ji(gr) is the spherical Bessel function. The expansion coefficients al;f;fn and the
one-electron epergies E;(k) are found solving the LMTO eigenvalue problem.

The SMD can be obtained experimentally from the energy-resolved electron momentum
spectroscopy based on the (e, 2e) reaction. In this reaction a primary fast electron knocks
out a bound electron from the solid and both secondary electrons are detected in time
coincidence with fully determined kinematics. When the energy of the primary and two
secondary electrons is large enough one can think of the (e, 2e) reaction as a free-electron—
eleciron collision satisfying the energy and momentum conservation laws:

e+ Ey=E,+ Ep q+k0=ka+k]; (10

Here we supply indices 0, a and & to the primary and two secondary electrons, respectively.
The binding energy ¢ and momentum g refer to the initiaily bound electron.

The cross-section of the (e, 2¢) reaction gives the probability of finding the two
secondary electrons within the unit range of energy and momentum space. Because of
the energy and momenium conservation (10) this is equivalent to finding the bound electron
within the unit interval of the binding energy de and the momentum dg. The latter
probability is given by the SMD. So the (e, 2e) cross-section can be written as (Persiantseva
et al 1991, Allen ef al 1990)

da; — any Kakp (do
O T AT A T A A » (dg) o pi(e, 9) (1)
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where the Mott cross-section describes free-electron—electron scattering in the laboratory
frame and N is the number of unit cells in the crystal.

A partial energy integration can be performed in (11) using the definition of the sMD
(4) and the energy conservation (10)

de,:,:S(Ea + Ep— Eo— Ej(k)) =1+ VE;(k) ky/2E,. . (12)

By chosing a large enough energy of the secondary eleciron E; one can make the second
term in the right-hand side of (12) negligible. The integrated cross-section is then written
as .
dO’j 4 kky (do
ac, oy a8, ~ PN (Eﬁ)m, o). (3

As foliows from (11) and (13) the (e, 2e) experiment gives the band-specific momentum
densities p;(¢, @) or p;(g). This is in contrast with the Compton scattering which allows
only for obtaining the sum over all occupied bands.

It is of interest to investigate momentum densities in a certain high-symmetry direction
in the momentum space, ¢ = gé, as functions of scalar ¢. In this case the SMD p;(¢, g&)
becomes a function of only two variables, € and 4. and can be presented conveniently as a
set of momentum profiles at various energies or energy profiles at various momenta. The
EMD p;(g€) becomes a function of one scalar variable g and can be plotted alongside with
the energy bands when the extended zone scheme is used.

Ancther point of interest is the spherically averaged sMP which can be obtained by
integration over the irreducible wedge of the Bz. For the FCC structure:

nf4

- i t
4
0i (€, q) =(4Jr)"fdﬂq pile, q) = ;r-fdsinﬂq fdsoq pie, ). (14)
[} [}

This averaging corresponds to the (e, 2e) reaction on a polycrystalline target.
Numerically the spherical integration of (14) is performed on a regular grid of the polar

and azimuthal angles #, and ¢,. This defines a finite mesh of g-values, ¢; = (g, %1, @)

The SMD is then calculated as a sum of the EMD p;(q,) weighted with a Gaussian which is

centred at the appropriate one-electron energy:

€—E; (QE):I

de (15)

pie,g)=A ZP;‘(Q&) r [
Here we replace the §-function in the expression of the SMD (4) by a Gaussian to simulate
a finite energy resolution in the experiment, 8¢ = (8 In2)7/2 PwaM, A is a normalization
constant. It is seen from (15) that the number of points in the g-mesh required to reproduce
a smooth energy profile by overlapping Gaussians depends on de. We found that for
all materials considered the 16 x 16 mesh in polar and azimuthal angles is sufficient to
simulate an energy resolution of 1.0 eV which is a realistic value for modern solid-state
(e, 2e) techniques (Storer ef al 1994).
After integration over-energy of the SMD p; (¢, g) of (15) we get a spherically averaged
EMD:

pilg) = fde pite.q) 7 (16)
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which is a function of the scalar ¢ similar to the directional EMD p;(g€). The spherically
averaged EMD obeys an obvious sum rule following from (5):

2 4n [ ¢ 4a oit@) = M. an
i

Table 2. Critical-point energies in diamond and silicon {in eV) respect to the valence band
maximum at s, ‘

¥ X1 X4 La Ly Ly Method  Reference

Diamond

=2132 -—~12.60 619 —1544 —1336 -2.30 LMTO Present

—-21.28 —12.59 —-6.18 —=1543 _ —-1335 -23 LMTO Gliezel er af (1980) |
—21.03 -—1243 —627 -—1529 -1309 232 LCAD Chelikowsky and Louie (1984)
—23.0 ; -17.3 —144 GWaA Hybertsen and Louie {1986b)
~22.88 —13.80 —6.69 ~1695 —1447 2098 GWA Rohlfing er af (1993b}

=21 =15.2(3) —12.8(3} Exp. Himpsel er af (1980)

Silicon

—-11.93 =775 =272 —9.54 -694 =113 LMTO Present
—11.87 =775 =272 —9.53 —693 =105 LMTO Glétzel et al (1980)

—-12.36 -7.69 =286 —9.55 —-696 —123 EPM Chelikowsky and Hohen {1976)
—12.04 —-2.99 =979 =718 =127 GWA Hybertsen and Louie (1986b)
—12.04 —8.01 —2.98 —~9.77 -721 124 GWA Rohlfing et af (1993b}
—12.5({6) -2.9 —93(4) —68(2) -12(2) Exp. Masovic er af (1983)
—12.4(6) =2.5(3) —6.4(4) Exp. Masovic ez al (1983)

) Exp. Himpsel et af (1981}

-16 Exp. Uhrberg er af (1985)

34 Exp. Wachs et al (1985)

4. Results and discussion

4.1. Band structure

The valence band structure of the diamond-like semiconductors has been studied extensively
in recent years both by theory and experiment. A vast amount of data are available in the
literature. It is not the aim of the present paper to improve on the accuracy of the calculated
band structure or achieve better agreement with experiment. The only reason for which we
present here our band-structure results is to test the implementation of the LMTO method
and the choice of the atomic sphere parameters. This is done by comparing valence band
energies at several high-symmetry points obtained in the present calculation with the most
recent and presumably most accurate theoretical and experimental data available to date.
Besides the LMTO method the following methods were used in previous calculations: the
empirical pseudopotential method (EPM), linear combination of atomic orbitals (LCAQ), the
GW approximation (GWA) which is an expansion of the self-energy operator in terms of the
dynamically screened Coulomb interaction (W) and the dressed Green's function (G). All
these data are collected in table 2 (diamond and silicon} and table 3 (germanium and tin).
The latter crystals exhibit stronger spin—orbit interaction resulting in band splitting. We do
not include explicitly spin—orbit interaction in our calculation and compare our data with
the nearest symmetry point cotresponding to non-zero splitting.

One can see from the tables that our resulis are very close to the previous LMTO
calculation of Glitzel et al (1980). In general our data are fairly close to the experimental
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Figure 1. Diamond. Energy bands E; (g — &) (I} and electron momentum densities o;(g) (II),
g =gé in the [100], [110] and [111] directions ({a)-(c)) and as the spherical average (d).
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Figure 2. Silicon. As figure 1. Broken lines in the [100] and [110] mp plots show the local
pseudopotential calculation of (Schiilke (974).

results with deviations generally not exceeding the difference between experimental results
from various groups.

We also plot energy bands E;(g), ¢ = g&, as continuous functions of momentum value g
in directions [10C], [110] and [111] for diamond, silicon, germanium and grey tin as shown
in panels I-a to I-c {top row) of figures 1-4, respectively. Where the momentum value
g extends outside the first BZ the band structure is obtained by translation of a reciprocal-
lattice vector to bring ¢ back to the first zone as indicated in (4). This allows for continuous
identification of each band by the band index 1 t0 4 and relates the energy of the bound
electron with the momentum value g as measured in the (e, 2e) experiment (equation (10)).

In the same figures 1-4 we also show the spherically averaged band energies as functions
of momentum (panels I-d, top row). The detailed procedure for obtaining these bands is

described in the next section.
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Figure 3. Germanium. As figure ],
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Figure 4. Grey tin. As fAgure 1.

4.2, Momentum density

We plot the EMD p;{q), ¢ = g€, as functions of momentum g in directions [100], [110]
and [111] for diamond, silicon, germanium and grey tin in panels II-a to II-c (bottom row)
of figures (1-4), respectively. The same momentum scale and band labels are used in the
energy band and momentum density plots in each direction. These two plot types allow
us to reconstruct easily the sMD as a function of momentum and energy in each direction.
Indeed, as follows from (4), the SMD p; (€, g} can be viewed as the energy-independent EMD
pi{g) governed in the energy scale by the band energy E;(g — G).

In direction [100] the SMD follows a free-electron-like parabola along band 1. It switches
instantly to band 2 at the first Bz boundary and follows band 2 through the second and third
BZ where the absolute value of the SMD drops to zero. In direction [110] the SMD goes
through the first BZ as a free-clectron-like band 1. Near the zone boundary band 3 starts
to contribute and the SMD switches continuously from band 1 to band 3. It follows band 3
all the way to the third BZ where it vanishes gradually. The same pattern can be observed
in direction [111] where the SMD goes along band 1 and then band 2. One can also notice
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Table 3. Critical-point energies in germanium and grey tin {in V) respect to the valence band
maximum at I'g. .

Ts Xs Xs Lg ~ Lg Las Method  Reference

Germanium

—12.82 —8.87 -~298 1065 =763 —137 LMTQ Present

—-12.50 . 857 =301 -1033 ~746 —1.37 LMTO Giotzel et al (1980)

—12.66 —-865  —329 - -1039 =761 —143 EPM Chelikowsky and Hohen {1976}
—12.86 913 =322 -108% -7.82 —143 GWaA Hybertsen and Louie ([986b)
—=12.84 —0.06 ~3.16 ~ —1082 -—7.81 —147 GWA -
—12.6 —3.2(2) ~106(5) —7.72) —14(3y Exp. Grobman et af {(1975)

—13 -9 —~35 , Exp. Hsich er al (1984)

—12.9(2) —9.3(2) ~3.5(2) Exp. Wachs et al {1985)

Grey tin

=10.71 —-7.57 ~245 —902 —-640 —115°  LMTO Present

—10.43 —-746 256 —888 —-630 —1.04 LMTO Brudevoll et al (1993)

—11.34 —-7.88 275 —944 —6.60 —1.20 EMP Chelikowsky and Hohen (1976}
~11.2(2) -7.9(1) -2.8(1) Exp. Middelmann et af

that some bands do not contribute to the SMD along these high-symmetry directions. These
include bands 3, 4 in the [100] and [111] directions, and bands 2, 4 in the [110] direction.

This behaviour of the SMD in high-symmetry directions can be understood in terms of
the irreducible representation of the point group of the crystal momentum vector (Harthoorn
and Mijnarends 1978) and is typical for all diamond structure erystals. A contribution from
any particular band to the EMD will be non-zero only if the operator exp{—ig - r} in {4)
contains a part transforming to the same representation as a basis function y;x(r). In the
first BZ where p = & only bands belonging to the totally symmetric representations (i.e. Ay,
Y1, Ay) contribute to the EMD. These are band 1 in [100] direction, bands 1 and 3 in [110]
direction and bands 1 and 2 in [111] direction. For cubic structures with one atom per
elementary cell, this selection rules also hold outside the first 82. However, for two-atom
diamond structure the Fourier transform (9) acquires an additional multiplier exp(—1G' - 7).
For this reason occupation switches from band 1 to band 2 in direction [100]. For other
directions the same bands continue to be occupied outside the first BZ. For general momenta
lying outside any symmetry direction there is only one representation, the-totally symmetric
one, and therefore all four bands contribute to the SMD. This is clearly seen when the
spherical average of the EMD is taken.

In contrast with energy band calcuiations very little work has been previously done on
band-resolved EMD in diamond structure semiconductors. On the theoretical side, we found
only one publication- of (Schiilke 1974) which contains the EMD of silicon in [100] and
[110] directions. The local pseudopotential method was used in this calculation. We plot
these data along with our results in figure 5, panels Il-a and H-b. There is a good agreement
between the two calculations except a discontinuity in the EMD of Schiilke in the direction
[110]. Qur data do not have this discontinuity, which is only typical for crossing bands as
in the case of [100] direction, There is also a small contribution from band 2 in the second
Bz in the [110] EMD of Schiilke which is not allowed from symmetry con51derat10ns and is
absent in our calculation. .

Experimentally, the (e, 2¢) reaction allows direct determination of the EMD. However,
no experiment has been done so far on an oriented crystalline target. The measurements
reported to date (Vos et al 1994, 1995b, a, Cai et al 1995b, a, Storer er af 1995) have
been performed on polycrystalline or amorphous thin films. These data can be analysed in
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Figure 5. The spherically averaged spectral momentum density p;(¢. ¢) of {14) in diamond as
a function of energy at constant momenta. Energy is relative to the valence band maximum.

terms of the spherically averaged SMD or EMD. Here we present our calculations of these
densities which we produce with the numerical procedure described in section 3. First we
generate the SMD p;(¢, ) of (14). As an example we show the spherically averaged sMD
for diamond as a series of energy profiles at various momenta in figure 5. Different plots
are shifted vertically to accommodate several profiles in the same figure. Different line
styles denote partial contributions from bands 1 to 4 to each energy profile. We integrate
these partial contributions over energy according to (16) to get the spherically averaged
EMD p;(g) for each band as a function of momentum value g which we plot in panel II-d
of figures 1-4. By tracing the peak position of the partial band contribution to the energy
profiles we obtain the spherically averaged band dispersions which we plot in panel I-d of
figures 1-4.

The pattern of the spherically averaged bands is changing significantly from diamond to
tin, When they are viewed together with the EMD, the spherically averaged bands in diamond
follow almost continuously a free-electron-like parabola whereas in silicon there appears a
gap between bands 1 and 2. In germanium and tin there is an additional gap between bands
2 and 3 which breaks down the free-electron-like picture that is seen in diamond. In all
cases the combined density drops to zero at a position roughly corresponding to the centre
of the second 8z where we can no longer trace unambiguously peak positions of partial
band contributions.

This tendency can also be seen in grey-scale plots of figure & where the SMD p; (g, g)
is presented in linear grey scale as a function of energy and momentum for the all the
materials considered. Here lighter shading corresponds to greater intensity. This type of
plot gives the most complete picture of the spherically averaged sMD. Clearly the SMD for
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Figure 6. A linear grey-scale plot of the SMD p; (¢, ¢) as a function of energy and momentumn.
(a) Diamond. (b) Silicon. (c) Germanium. (d) Grey tin. Lighter shading represents greater
intensity.

diamond resembles a free-electron-like parabola. For silicon, germanium and tin, although
the gap between bands 1 and 2 is still visible, the two bands appear to be touching each
other. The band gap between bands 2 and 3 is clearly visible and becomes bigger going
from silicon to tin.

When presented in the same form, as a linear grey-scale plot, experimental data on
diamond (Storer ef al 1995), silicon {(Vos et al 1995a) and germanivm (Cai et al 1995a)
resemble very strongly our theoretical calculations. The dispersion of the main feature is in
excellent agreement with our calculations. However, except for in germanium, no interband
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gaps are seen in the experiment. This might well be because of a significantly poorer energy
resolution in the experiment (about 2 eV rather then 1 eV which we used in our convolution
procedure). Also, the materials studied experimentally were amorphous and the question
has to be answered of to what extent these results can be compared with our calculations
for randomly oriented crystals.

5. Conclusion

The valence band electron energy and momentumn distributions in the form of band dispersion
curves and band-specific electron momentum densities have been calculated for diamond,
silicon, germanium and grey tin along {100], [110] and [111] directions using the LMTO
method with four atomic spheres per elementary cell. While the valence-band-structure
results are essentially the same as previously calculated, which lends assurance to the correct
implementation of the LMTO method, the calculated SMD are the first of this type. The
spherically averaged sMD have also been calculated by angular integration of the Gaussian-
weighted EMD over repeating part of the FCC Bz. The spherically averaged band dispersion
resembles a free-electron-like parabola for diamond whereas in the case of the other materials
band gaps appear between the averaged bands.

These data can be used for interpreting resulis of the (e, 2e) experiment in the form
of the fully differential cross-section or energy-integrated triply differential cross-section on
both oriented or disordered or amorphous targets. When compared with recent experimental
results on amorphous diamond, silicon and germanium, the calenlated spherically averaged
SMD shows very close resemblance with the experiment. However, better energy resolution
is desirable to show more clearly the interband gaps.

The full testing of the electron momentum distributions in the materials studied can
be achieved when the experiments on oriented crystalline targets become possible. Such
experiments will have enormous potential for providing a thorough understanding of the
electronic structure of these technologically important solids.
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