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Energy-resolved electron momentum densities of 
diamond-structure semiconductors 

A S Kheifetst and Y Q Cai 
Electronic SmcNre of Materials Centre. The Flinden University of South Aiitnlia. GPO Box 
2100, Adelaide 5001, Australia 

Received 8 November 1994 

Abstract. The linear muffin-tin orbital (LMm) method has been used to calculate energy and 
momentum distributions of valence electrons in diamond. silicon. germanium and grey tin along 
[loo], [I101 and l l l i l  direnions and 3s the spherical average over the irreducible wedge of 
the Brillouin zone. These dara can be used for intemreting results of (e. Ze) experiments on 
single-ctyslal. polycrystalline and amorphous targets. 

1. Introduction 

Since the introduction of the density functional theory (DFT) (Hohenberg and Kohn 1964) 
and the local density approximation (LDA) (Kohn and Sham 1965) some thirty years ago, 
enormous~progress has been achieved in the field of first-principles theoretical calculations of 
the ground-state properties of bulk semiconductors, their surfaces and interfaces (Lundqvist 
and March 1983, Bassani ef al 1985). The density functional theory in principle provides 
an exact formalism for the ground-state energy. The local density approximation reduces 
the many-body problem to the self-consistent solution of a set of effective oneparticle 
equations. On this basis, many calculation methods have been developed which have the 
computational efficiency and accuracy for a wide range of materials. For the- valence band 
structure of bulk semiconductors, in particular, the difference between the results of different 
computational schemes is often less than the best experimental resolution available nowadays 
from tecbniques such as angle-resolved photoemission (Leckey and Riley 1992). The biggest 
drawback of the local density approximation is that the one-particle eigenvalues can not be 
interpreted formally as quasiparticle energies. When compared to optical data, band gaps in 
semiconductors are typically underestimated by 30-50%. and'in particular cases like Ge the 
gap is closed when relativistic effects are taken into considerdon~(Bache1et and Christensen 
1985). To account for this discrepancy, the latest development in this area has been the use of 
the so-called GW approximation (GWA) for the evaluation of the electron self-energy operator 
and has led to excellent agreement with a large body of experimental data (Hybertsen and 
Louie 1986a, Rohlfing ef al 1993a), including in particular those concerning the conduction 
bands obtained from inverse photoemission (Ortega and Himpsel 1993). Nevertheless, 
these quasiparticle calculations produced essentially the same results as those produced by 
calculations based on the local density approximation as far as the relative energies of the 
valence bands are concerned (see further discussion in section 4), the improvement having 
been mainly on the~prediction of the conduction bands and of the band gaps. 
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On the other hand, theoretical valence-band-structure calculations in the past have 
been tested almost exclusively in terms of energy, i.e., the eigenvalues of the Kahn-Sham 
equations (Kahn and Sham 1965). In contrast, relatively little attention has been directed 
towards the wavefunction (i.e., the eigenfunction) of the electrons. This is despite the fact 
that wave function information provides a more sensitive way of testing the computational 
scheme under investigation if the electron wave function can be measured experimentally. 
Direct measurements of the wave function are not available at the present time, but it is 
known that under the independent-particle approximation the spectral momentum density 
(SMD) P ( E ,  q) is proportional to the square of the one-electron wave function in the 
momentum space. Since P ( E ,  q )  d6 dq gives the probability of finding an electron within 
the energy and momentum ranges of 6 to e + d6 and q to q -!- dq, respectively, the SMD 
dictates the electronic properties of solids. Partial information on the momentum density can 
be obtained readily from Compton profiles (Cooper 1985) and from the angular correlation 
of  positron annihilation radiation (Jab et al 1985). In terms of a full testing of the wave 
function, the energy-resolved electron momentum spectroscopy (EMS) based on the (e, 2e) 
reaction (McCarthy and Weigold 1988, 1991) provides enormous potential. The EMS has 
achieved gear success in the study of the momentum distribution of valence electrons in 
gas targets (McCarthy and Weigold 1988, 1991). For solid materials, a series of recent 
experiments have also been successfully performed on various amorphous and disordered 
thin-film targets (VOS et al 1994, 1995b, a, Cai er al 1995b, a, Starer et al 1995), calling 
for theoretical studies of the spectral momentum density. For this purpose, it is appropriate 
to revisit existing computational techniques. This would not only provide a more sensitive 
way of testing the calculation technique, but also provide the necessary theoretical data for 
interpreting experimental (e, 2e) results. 

We have studied the SMD of diam-ond-structure semiconductors, including diamond (C), 
silicon (Si), germanium (Ge) and grey tin (a&), using the linear muffin-tin orbital (LMTO) 
method. In the present paper, the results for the three major symmetry directions [OOI], 
[I 101 and [I I I ]  (i.e. along the symmetry axes A, C and A, respectively) and as the spherical 
average over the irreducible wedge of the face-centred cubic (FCC) Brillouin zone will be 
presented. As recent (e, 2e) studies of the SMD of evaporated amorphous diamond (Starer 
et al 1995), silicon (Vas et al 1995a), germanium (Cai et nl 1995a) and polycrystalline 
silicon carbide (Cai et al 1995b) showed, the spherical averaging of the spectral momentum 
density can be~used to study amorphous and disordered materials. 

The rest of the paper will be organized as follows. In section 2 we outline the LMTo 
method and specify the atomic sphere parameters used in our calculation. In section 3 we 
express the SMD in tems of the LMTO eigenfunctions and link it with various forms of the 
differential cross-sections obtained from the (e, Ze) reaction. The band-structure calculation 
results are discussed in section 4.1 in comparison with other theoretical and experimental 
data available to date. Directional and spherically averaged SMD are presented in section 4.2. 
Finally the results are summarized in section 5 .  

2. The LMTO method 

The formalism of the LMTO method has been described in details in the monograph of 
Shiver (1984). The essence of the method is that for the atomic polyhedra a number of 
atomic spheres are substituted, each of which represents a non-equivalent atomic position. 



Energy-resolved electron momentum densities 1823 

The total volume of the spheres is equated to the volume of the elementary cell: 

where R, is the muffin-tin (MTj radius of a sphere at site s. 
The electron potential is spherically symmetric within the spheres. The tails of.the 

LMTO orbitals outside the spheres are chosen to have zero kinetic energy. The Bloch sum 
of the tails is cancelled withiin the spheres. So the one-electron wave function within any 
particular sphere centred at r, can be written as 

Here k is the crystal wave vector, j is the band index, Km is the spherical harmonic 
depending on the orbital momentum 1 and its projection m. The expansion coefficients a% 
for a given hlT sphere s are found by solving the LMTO eigenvalue problem. The radial part 
of the wave function P,l(r) depends on the type of atom at site s and the orbital momentum 
1 but does not depend on k and j which increases significantly the computational efficiency 
of the LMTO method. 

The diamond structure elementary cell has two non-equivalent atomic positions at 
(0.0,O) and (a/4,a/4,a/4) where a is the lattice parameter. This structure is, however, 
far from close packing with only 0.34 of the cell volume filled with touching spheres. 
We follow the treatment of the ‘open’ diamond structure by Glo&el et ~l (1980) who 
suggested inserting two empty atomic spheres at the interstitial sites. We choose these sites 
at (-aj4, -a/4, -a/4) and (aj2,0,0). 

The MT radius corresponding to four equal-size spheres is calculated from (1) as 

R,r = %. (i) = 0.2462~. (3) 

We use the MT radii given in table 1 which we calculate with the lattice parameters 
obtained from the book of Cohen and Chelikowsky (1988). We chose the maximum orbital 
momentum l,, = 2’in the LMTO expansion (2). 

Table 1. Lanice parameters and MT radii (in atomic uniu). 

Lanice parameter MT radius . -  
Matenal (A) (au) (au) 

Diamond 3.567 6.742 1.659 
Silicon 5.431 10.263 2.527 
Germanium 5.657 10.690 2.632 
Grey tin 6.491 12.267 3.020 

3. The spectral momentum density 

By definition, the SMD is expressed through the Fourier transform of the one-electron wave 
function @jk: 
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Here n j k  and E j k  are the occupation number and energy of the corresponding one-electron 
state. The integration in (4) is carried out over the unit cell where the wave function $ f j k  

is normalized to unity. The reciprocal-lattice vector G translates the momentum 4 to the 
first Brillouin zone (BZ). The sMD is normalized over energy and momentum space to the 
number of valence electrons per unit cell per spin: 
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The SMD gives the probability of finding an electron in band j within the unit range 
of the energy and momentum space. This is the most detailed infonnation about electron 
distribution in solids. Less specific distributions can be obtained by the partial integration 
of the SMD over momentum or energy which gives either the density of states: 

or the energy-integrated electron momentum density (EMD) 

/ de p j ( ~ ,  4) = pj(4) 

pj(q) = (2n)-' x n j k  I/ dr ~ , ~ ( ~ ) e - i * ~ l  Sq.k+G.  

where according to (4) 
2 

G k  

Taking advantage of the central-field expansion (2) the sm can 
as 

(7) 

readily c, dated 

(9) 
where j f (q r )  is the spherical Bessel function. The expansion coefficients ai; and the 
one-electron energies E j  (k) are found solving the Lmo eigenvalue problem. 

The sMD can be obtained experimentally from the energy-resolved electron momentum 
spectroscopy based on the (e, 2e) reaction. In this reaction a primary fast electron knocks 
out a bound electron from the solid and both secondary electrons are detected in time 
coincidence with fully determined kinematics. When the energy of the primary and two 
secondary electrons is large enough one can think of the (e, 2e) reaction as a free-electron- 
electron collision satisfying the energy and momentum conservation laws: 

€+Eo E a  + E h  q + k o =  IC, + kh. (10) 
Here we supply indices 0, a and b to the primary and two secondary electrons, respectively. 
The binding energy E and momentum q refer to the initially bound electron. 

The cross-section of the (e, 7.e) reaction gives the probability of finding the two 
secondary electrons within the unit range of energy and momentum space. Because of 
the energy and momentum conservation (10) this is equivalent to finding the bound electron 
within the unit interval of the binding energy de and the momentum dq. The latter 
probability is given by the SMD. So the (e, 2e) cross-section can be written as (Persiantseva 
er al 1991, Allen ef al 1990) 
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where the Mott cross-section describes free-electron-electron scattering in the laboratory 
frame and N is the number of unit cells in the cjstal. 

A partial energy integration can be performed in (11) using the definition of the SMD 
(4) and the energy conservation (10) 

SdEhS(E,+Eb-Eo-Ej (k) )=  1+VEj(k).kb/2Eh. (12) 

By chosing a large enough energy of the secondary electron Eh one can make the second 
term in the right-hand side of (12) negligible. The integrated cross-section is then written 
as 

As follows from (1 1) and (13) the (e, 2e) experiment~gives the band-specific momentum 
densities &(E, q) or pj(q). This is in contrast with the Compton scattering which allows 
only for obtaining the sum over all occupied bands. 

It is of interest to investigate momentum densities in a certain high-symmeuy direction 
in the momentum space, q = q2, as functions of scalar q. In this case the SMD pj(e, qE) 
becomes a function of only two variables, 6 and q.  and can be presented conveniently as a 
set of momentum profiles at various energies or energy profiles at various momenta. The 
EMD pj(q&) becomes a function of one scalar variable q and can be plotted alongside with 
the energy bands when the extended zone scheme is used. 

Another point of interest is the spherically averaged SMD which can be obtained by 
integration over the irreducible wedge of the Bz. For the FCC structure: 

This averaging corresponds to the (e, Ze) reaction on a polycrystalline target. 
Numerically the spherical integration of (14) is performed on a regular grid of the polar 

and azimuthal angles B,, and p,,. This defines a finite mesh of q-values, qi = (4, Bi, pi). 
The SMD is then calculated as a sum of the EMD pj(q,) weighted with a Gaussian which is 
centred at the appropriate one-electron energy: 

Here we replace the &function in the expression of the SMD (4) by a Gaussian to simulate 
a finite energy resolution in the experiment, S E  = (8 ln2)-''* FWHM, A is a normalization 
constant. It is seen from (15) that the number of points in the q-mesh required to reproduce 
a smooth energy profile by overlapping Gaussians depends on 8 ~ .  We found that for 
all materials considered the 16 x 16 mesh in polar and azimuthal angles is sufficient to 
simulate an energy resolution of 1.0 eV which is a realistic value for modem solid-state 
(e, 2e) techniques (Storer et al 1994). 

After integration over-energy of the SMD pj(e, q )  of (15) we get a spherically averaged 
EMD: 

J 
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which is a function of the scalar q similar to the directional E m  pj(qk).  The spherically 
averaged EMD obeys an obvious sum rule following from (5): 

Table 2. Critical-point energies in diamond and silicon (in eV) respect to the valence band 
maximum at rv. 

rl XI x 4  I 4  LI LP Mefhod Reference 

Diamond 
-21.32 -12.60 
-21.28 -12.59 
-21.03 -12.43 
-23.0 
-22.88 -13.80 
-21(1) 
Silicon 
-11.93 -1.75 
-11.87 -1.75 
-12.36 -7.69 
- 12.04 
-12.04 -8.01 
-12.5(6) 
-12.4(6) 

-6.19 -15.44 -13,36 
-6.18 -15.43 ~ -It35 
-6.21 -15.29 -13.09 

-6.69 -16.95, -14.41 
-17.3 -14.4 

-15.2(3) -12.8(3) 

-2.12 -9.54 76.94 
-2.12 -9.53 -6.93 
-2.86 -9.55 -6.96 
-2.99 -9.19 -1.18 
-2.98 -9.11 -1.21 
-2.9 -9.3(4) -6.8(2) 
-2.5(3) -6.4(4) 

-3.4 

-2.80 
-2.8 
-2.82 

-2.98 

-1.13 
- 1 .05 
-1.23 
- 1.27 
- 1.24 
-1.2(2) 

-1.5 
-1.6 

LMTO 
LMTO 
LCAO 

CWA 

CWA 

&P. 

LMTO 
LMTO 
EPM 
OWA 

GWA 

b P .  
Exp. 
Exp. 
Exp. 
Exp. 

Present 
Gl@trel et 01 (1980), 
Chelikowsky and Louie (1984) 
Hybensen and Louie (1986b) 
Rohlfing et01 (1993b) 
Himpsel el nl(1980) 

Present 
Glijf~d et01 (1980) 
Chelikowsky and Hohen (1916) 
Hybensen and Louie (1986b) 
Rohlfing et al (1993b3 
Masovic e t d  (1983) 
Masovic er ol (1983) 
Himpsel etd(1981)  
Uhrbcrg et 01 (1985) 
Wachs et nl(1985) 

4. Results and discussion 

4. I .  Band structure 

The valence band structure of the diamond-like semiconductors has been studied extensively 
in recent years both by theory and experiment. A vast amount of data are available in the 
literature. It is not the aim of the present paper to improve on the accuracy of the calculated 
band structure or achieve better agreement with experiment. The only reason for which we 
present here our band-structure results is to test the implementation of the LMTO method 
and the choice of the atomic sphere parameters. This is done by comparing valence band 
energies at several high-symmetry points obtained in the present calculation with the most 
recent and presumably most accurate theoretical and experimental data available to date. 
Besides the LMTO method the following methods were used in previous calculations: the 
empirical pseudopotential method (EPM), linear combination of atomic orbitals (LCAO), the 
GW approximation (GWA) which is an expansion of the self-energy operator in terms of the 
dynamically screened Coulomb interaction (W) and the dressed Green’s function (G). All 
these data are collected in table 2 (diamond and silicon) and table 3 (germanium and tin). 
The latter crystals exhibit stronger spin-orbit interaction resulting in band splitting. We do 
not include explicitly spin-orbit interaction in our calculation and compare our data with 
the nearest symmetry point corresponding to non-zero splitting. 

One can see from the tables that our results are very close to the previous LMTO 
calculation of Glotzel et a1 (1980). In general our data are fairly close to the experimental 
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Figure 1. Diamond. Energy bands E j ( q  - G) (I) and electron momentum densities p j ( q )  (U), 
q = q0 in the [loo], [I101 and [I I !I directions ((a)+)) and as the spherical average (d). 
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Figure 2. Silicon. As figure 1. Broken lines in the [loo] and [IIOJ MD plols show the l o d  
pseudopotential calculation of (Sehilke 1974). 

results with deviations generally not exceeding the difference between experimental results 
from various groups. 

We also plot energy bands Ej(q ) ,  q = 48. as continuous functions of momentum value q 
in directions [loo], [110] and [ I  111 for diamond, silicon, germanium and grey tin as shown 
in panels I-a to I-c (top row) of figures 14,'respectively. Where the momentum value 
q extends outside the first Bz the band structure is obtained by translation of a reciprocal- 
lattice vector to bring q back to the first zone as indicated in (4). This allows for continuous 
identification of each band by the band index 1 to 4 and relates the energy of the bound 
electron with the momentum value q as measured in the (e, Ze) experiment (equation (10)). 

In the same figures 1 4  we also show the spherically averaged band energies as functions 
of momentum (panels I-d, top row). The detailed procedure for obtaining these bands is 
described in the next section. 
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4.2. Momentum densify 

We plot the EMD pj(q), q = qb, as functions of momentum q in directions [lOO], [I101 
and [ I l l ]  for diamond, silicon, germanium and grey tin in panels II-a to II-c (bottom row) 
of figures (1-4), respectively. The same momentum scale and band labels are used in the 
energy band and momentum density plots in each direction. These two plot types allow 
us to reconstruct easily the SMD as a function of momentum and energy in each direction. 
Indeed, as follows from (4), the SMD p j ( ~ .  q)  can be viewed as the energy-independent EMD 
pj(q) governed in the energy scale by the band energy E j ( q  - G).  

In direction [lo01 the SMD follows afreeelectron-like parabolaalong band 1. It switches 
instantly to band 2 at the first BZ boundary and follows band 2 through the second and third 
BZ where the absolute value of the SMD drops to zero. In direction [110] the SMD goes 
through the first BZ as a free-electron-like band 1. Near the zone boundary band 3 starts 
to contribute and the SMD switches continuously from band 1 to band 3. It follows band 3 
all the way to the third BZ where it vanishes gradually. The same pattern can be observed 
in direction 11 111 where the SMD goes along band 1 and then band 2. One can also notice 
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Table 3. Critical-point energies in germanium and grey tin (in eV) respect to the valence band 
maximum at r8. 

r6 Xs Xs Ln ~ L6 4 . 5  Method Reference 

Germanium 
-12.82 -8.87 -2.98 -10.65 -7.63 -1.37 LMX) Present 
-12.50 ~ -8.57 -3.01 -10.33 -7.46 -1.37 LMX) Gliitrel a d ( 1 9 8 0 )  
-12.66 -8.65 ~ -3.29 ~ -10.39 -7.61 -1.43 EF’M Chelikowsky and Hohen (1976) 
-12.86 -9.13 -3.22 -10.89 -7.82 -1.43 GWA Hybensen and Louie (l986b) 

-12.6 -3.2(2) -10.6(5) -7.7(2) --1.4(3) Exp. Grobman e t d  (1975) 
-13 -9 -3.5 Exp. Hsieh etaf (1984) 
-12.9(2) -9.3(2) -3.5(2) Exp. Wachs e t d  (1985) 
Grey tin 
-10.71 -7.57 -2.45 -9.02 -6.40 -1.15 . LMTO P m t  
-10.43 -7.46 -2.56 -8.88 -6.30 -1.04 LMTO Brudevoll et a1 (1993) 
-11.34 -7.88 -2.75 -9.44 -6.60 -1.20 EMP Chelikowsky and Hohen (1976) 
-lI.2(2) -7.9(1) -2.8(1) Exp. Middelmm et nl 

-12.84 -9.06 -3.16 . -10.82 -7.81 -1.47 GWA 

that some bands do not contribute to the SMD along these high-symmetry directions. These 
include bands 3, 4 in the [loo] and [ill] directions, and bands 2, 4 in the [110] direction. 

This behaviour of the SMD in high-symmetry directions can be understood in terms of ,  
the irreducible representation of the point group of the crystal momentum vector (Harthoom 
and Mijnarends 1978) and is typical for all diamond structure crystals. A contribution from 
any particular band to the E m  will be non-zero only if the operator exp(-iq. T) in (4) 
contains a part transforming to the same representation as a basis function @ j k ( ~ ) .  In the 
first BZ where p = IC only bands belonging to the totally symmetric representations (i.e. A I ,  
C1, A I )  contribute to the EMD. These are band 1 in [IOO] direction, bands 1 and 3 in [I101 
direction and bands 1 and 2 in [111] direction. For cubic smctures with one atom per 
elementary cell, this selection rules also hold outside the first BZ. However, for two-atom 
diamond structure the Fourier transform (9) acquires an additional multiplier exp(-iG. T ~ ) .  

For this reason occupation switches from band 1 to band 2 in direction [IOO]. For other 
directions the same bands continue~to be occupied outside the first BZ. For general momenta 
lying outside any symmetry direction there is only one representation, theLtotally symmetric 
one, and therefore all four bands contribute to the SMD. This is clearly seen when the 
spherical average of the EMD is taken. 

In contrast with energy band calculations very little work has been previously done on 
band-resolved EMD in diamond structure semiconductors. On the theoretical side, we found 
only one publication-of (Schiilke 1974) which contains the EMD of silicon in [I001 and 
[110] directions. The local pseudopotential method was used in this calculation. We plot 
these data along with our results in figure 5, panels 11-a and U-b. There is a good agreement 
between the two calculations except a discontinuity in the EMD of Schiilke in the direction 
[IlO]. Our data do not have this discontinuity, which is only typical for crossing bands as 
in the case of [IOO] direction. There is also a small contribution from band 2 in the second 
BZ in the 11101 EMD of Schiilke which is not allowed from symmetry considerations and is 
absent in our calculation. 

Experimentally, the (e, 2e) reaction allows direct determination of the EMD. However, 
no experiment has been done so far on an oriented crystalline target. The measurements 
reported to date (Vos et a1 1994, 1995b. a, Cai et al 1995b, a, Storer er al 1995) have 
been performed on polycrystalline or amorphous thin films. These data can be analysed in 
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5 

Figure 5. The spherically wen,@ specval momcntum density pj (s .  q )  of (14) in diamond 3s 
a function of energy at cormant momenta. Energy is relative to the valence band maximum. 

terms of the spherically averaged SMD or EMD. Here we present our calculations of these 
densities which we produce with the numerical procedure described in section 3. First we 
generate the SMD & ( E ,  q) of (14). As an example we show the spherically averaged SMD 
for diamond as a series of energy profiles at various momenta in figure 5. Different plots 
are shifted vertically to accommodate several profiles in the same figure. Different line 
styles denote partial contributions from bands 1 to 4 to each energy profile. We integrate 
these partial contributions over energy according to (16) to get the spherically averaged 
EMD pj (4)  for each band as a function of momentum value q which we plot in panel II-d 
of figures 1-4. By tracing the peak position of the partial band contribution to the energy 
profiles we obtain the spherically averaged band dispersions which we plot in panel I-d of 
figures 14, 

The pattern of the spherically averaged bands is changing significantly from diamond to 
tin. When they are viewed together with the EMD, the spherically averaged bands in diamond 
follow almost continuously a free-electron-like parabola whereas in silicon there appears a 
gap between bands 1 and 2. In germanium and tin there is an additional gap between bands 
2 and 3 which breaks down the free-electron-like picture that is seen in diamond. In all 
cases the combined density drops to zero at a position roughly corresponding to the centre 
of the second BZ where we can no longer trace unambiguously peak positions of partial 
band contributions. 

This tendency can also be seen in grey-scale plots of figure 6 where the SMD pj(6, q )  
is presented in linear grey scale as a function of energy and momentum for the all the 
materials considered. Here lighter shading corresponds to greater intensity. This type of 
plot gives the most complete picture of the spherically averaged sMD. Clearly the SMD for 
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Figure 6. A linear grey-scale plot of the SMD Q,(<. q )  as a function of energy and momentum. 
(a) Diamond. (b) Silicon. (c) Germanium. (d) Grey tin. Lighter shading represents greater 
intensity. 

diamond resembles a free-electron-like parabola. For silicon, germanium and tin, although 
the gap between bands 1 and 2 is still visible, the two bands appear lo be touching each 
other. The band gap between bands 2 and 3 is clearly visible and becomes bigger going 
from silicon to tin. 

When presented in the same form, as a linear grey-scale plot, experimental data on 
diamond (Starer el al 1995), silicon (Vas et al 1995a) and germanium (Cai er a1 1995a) 
resemble very strongly our theoretical calculations. The dispersion of the main feature is in 
excellent agreement with our calculations. However, except for in germanium, no interband 
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gaps are seen in the experiment. This might well be because of a significantly poorer energy 
resolution in the experiment (about 2 eV rather then 1 eV which we used in our convolution 
procedure). Also, the materials studied experimentally were amorphous and the question 
has to be answered of to what extenrthese results can be compared with our calculations 
for randomly oriented crystals. . 

5. Conclusion 

The valence band electron energy and momentum distributions in the form of band dispersion 
curves and band-specific electron momentum densities have been calculated for diamond, 
silicon, germanium and grey tin along [IOO], [110] and I1111 directions using the LMTO 
method with four atomic spheres per elementary cell. While the valenceband-structure 
results are essentially the same as previously calculated, which lends assurance to the correct 
implementation of the LMTO method, the calculated SMD are the first of this type. The 
spherically averaged SMD have also been calculated by angular integration of the Gaussian- 
weighted EMD over repeating part of the FCC BZ. The spherically averaged band dispersion 
resembles a free-electron-like parabola for diamond whereas in the case of the other materials 
band gaps appear between the averaged bands. 

These data can be used for interpreting results of the (e, 2e) experiment in the form 
of the fully differential cross-section or energy-integrated triply differential cross-section on 
both oriented or disordered or amorphous targets. When compared with recent experimental 
results on amorphous diamond, si1ico.n and germanium, the calculated spherically averaged 
sMD shows very close resemblance with the experiment. However, better energy resolution 
is desirable to show more clearly the interband gaps. 

The full testing of the electron momentum distributions in the materials studied can 
be achieved when the experiments on oriented crystalline targets become possible. Such 
experiments will have enormous potential for providing a thorough understanding of the 
electronic structure of these technologically important solids. 
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